Detecting the disaster event with social media data : a GIS based approach.
dc.barcode | 018493 | |
dc.centre | Faculty of Technology | |
dc.classno | MG TH-0140 MAL | |
dc.contributor.advisor | Schroder, Dietrich | |
dc.contributor.author | Malik, Aakash | |
dc.date.accessioned | 2020-11-04T10:23:59Z | |
dc.date.available | 2020-11-04T10:23:59Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12725/11404 | |
dc.pages | vi,56p.,CD-ROM | |
dc.title | Detecting the disaster event with social media data : a GIS based approach. | |
dc.type | Postgraduate Thesis Report |
Files
Original bundle
1 - 5 of 11

- Name:
- 01_Title.pdf
- Size:
- 283.55 KB
- Format:
- Adobe Portable Document Format
- Description:
- 01_Title.pdf

- Name:
- 02_Prelim Pages.pdf
- Size:
- 674.72 KB
- Format:
- Adobe Portable Document Format
- Description:
- 02_Prelim Pages.pdf

- Name:
- 03_Abstract.pdf
- Size:
- 229.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- 03_Abstract.pdf

- Name:
- 04_Contents.pdf
- Size:
- 397.19 KB
- Format:
- Adobe Portable Document Format
- Description:
- 04_Contents.pdf

- Name:
- 05_Chapter 1.pdf
- Size:
- 586.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- 05_Chapter 1.pdf