Pedestrian mobility modelling : a spatial machine learning approach.
dc.barcode | 021575 | |
dc.centre | Faculty of Technology | |
dc.classno | MG TH-0181 SAH | |
dc.contributor.advisor | Gaikwad, Santosh | |
dc.contributor.advisor | Gandhi, Shaily | |
dc.contributor.author | Sahajramani, Dipen | |
dc.date.accessioned | 2020-11-04T10:24:23Z | |
dc.date.available | 2020-11-04T10:24:23Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12725/11437 | |
dc.pages | ii,51,liii-lxivp.,1sheet | |
dc.title | Pedestrian mobility modelling : a spatial machine learning approach. | |
dc.type | Postgraduate Thesis Report |
Files
Original bundle
1 - 5 of 15

- Name:
- 01_Title.pdf
- Size:
- 278.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- 01_Title.pdf

- Name:
- 02_Prelim Pages.pdf
- Size:
- 234.16 KB
- Format:
- Adobe Portable Document Format
- Description:
- 02_Prelim Pages.pdf

- Name:
- 03_Abstract.pdf
- Size:
- 76.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- 03_Abstract.pdf

- Name:
- 04_Contents.pdf
- Size:
- 142.58 KB
- Format:
- Adobe Portable Document Format
- Description:
- 04_Contents.pdf

- Name:
- 05_Chapter 1.pdf
- Size:
- 200.59 KB
- Format:
- Adobe Portable Document Format
- Description:
- 05_Chapter 1.pdf